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SUMMARY 

A numerical method is presented for determining the shape of the free surface of a running stream which is 
disturbed by a semi-elliptical body affixed to the bottom. The effects of non-linearity on the wave resistance 
experienced by the semi-ellipse are discussed; most importantly, it is shown that there exist ellipses for which 
the non-linear wave drag is zero. Two wave-free (drag-free) surface profiles are presented. 

1. Introduction 

This paper concerns the two-dimensional, steady flow of  an ideal fluid in a horizontal stream, 

attached to the bo t tom of  which is a semi-elliptical obstacle. Far upstream the fluid flow is 

uniform, whilst a regular train of  waves is to be expected in general on the downstream side of  

the ellipse. The energy radiated away to infinity by this downstream wave train is exactly 

balanced by a horizontal force component  (the wave resistance) acting on the ellipse. In this 

paper we aim to demonstrate that,  for certain ellipse shapes, non-linear free-surface profiles are 

obtained which possess no waves on the downstream side, resulting in zero wave resistance ex- 

perienced by the semi-elliptical body.  This result may be of  significance in the design of  certain 

underwater craft, for example. 

A linearized solution to the present problem was calculated by Lamb ([1], p. 409) and will 

be discussed in Section 3 of  this paper. One of  the features of  this linearized solution is that,  for 

a given value of  the upstream Froude number,  the free surface is predicted to be free of  down- 

stream waves for ellipses of  certain special lengths, resulting in zero drag force acting on the el- 

lipse in these cases. In fact, the plot of  wave resistance versus ellipse length for fixed upstream 

Froude number and ellipse height is undulatory and passes through zero infinitely often, giving 

rise to a countably infinite set of  ellipse lengths for which the wave resistance is zero, at each 

value of  the upstream Froude number. 

The question o f  whether a wave-making disturbance may ever give rise to a non-linear wave 

resistance of  precisely zero has been investigated recently by Schwartz [2]. He considered the 

problem of  waves induced in a fluid of  infinite depth by a moving pressure distribution applied 

to the free surface, and demonstrated that, for certain values of  the pressure length, the non- 

linear wave resistance obtained was indeed extremely small, with a value of  the order of  10 -s 

times the maximum resistance obtained with the same value of  non-dimensional overpressure. 

The corresponding problem for a fluid of  fixed finite depth was considered by von Kerczek and 
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Salvesen [3]. Their results also appear to indicate very small values of wave resistance for certain 
pressure lengths. 

In the present paper, the problem is formulated inversely, by allowing the velocity potential 
and streamfunction to be independent variables. The solution is obtained utilizing a boundary- 
integral technique; consequently, points in the numerical scheme need only be placed on the 
fluid boundaries, rather than throughout the entire region. In addition, the bottom is conform- 

ally mapped onto a straight line, so that it is now only necessary to place numerical grid points 
at the free surface, with the bottom condition being satisfied automatically in the boundary- 
integral formulation of the problem. This formulation ensures maximum computational ef- 

ficiency in obtaining non-linear free-surface profiles. 

2. Formulation of the problem 

We consider two-dimensional, steady flow of an ideal fluid in a channel in which the flow in- 
finitely far upstream is uniform, with depth H and velocity c. The fluid flows from left to right. A 

semi-elliptical object of length 2R x and height Ry  is attached to the channel bed, which is 
otherwise flat and horizontal, and is placed symmetrically about the y-axis, which points verti- 
cally. The fluid is subject to the downward acceleration of gravity, g. 

The problem is expressed in terms of dimensionless variables forthwith, by referencing all 
lengths and velocities to the quantities H and c respectively. The velocity potential ¢ and stream- 
function ~b are non-dimensionalized with respect to the quantity cH; in terms of dimensionless 
variables, the bottom is chosen to be the streamline ff = 0, and the free surface is thus ~ = 1. 
Solutions to this problem are thus dependent upon the three dimensionless parameters 

C 
F=  &= (g/_/)  1 ,  

R X R y  
and f l = - -  

H H 

The quantity F is the upstream depth-based Froude number, and c~ and ~3 are respectively the 

dimensionless ellipse half-length and the ellipse height. The non-dimensional flow situation is 

depicted in Fig. 1. 
Since the fluid is incompressible and flows without rotation, it follows that the velocity 

potential and streamfunction obey the Cauchy-Riemann equations in the fluid interior. Thus 
the complex function f = ¢ + i ff is to be sought as an analytic function of the variable z = x + iy. 

Figure 1. 

>1 1 
) 

- ~  ~ X 

The non-dimensional flow situation in the z-plane. 
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The motion of the fluid at the free surface is governed by the Bernoulli equation 

~ F 2 w ~  + Y = ½ F  2 +1, (1) 

where 

af  
w = - -  = u - i v ,  

dz 

and u,v are the horizontal and vertical components of velocity. The bar denotes complex con- 
jugation. The condition of no flow normal to the bottom is expressed as 

dh 
u dx  =v on y = h ( x )  (2a) 

where the bottom y = h (x) is described by the equation 

h(x)= f _  ~' Ixl~>a (2b) 

(~= -x~ )~  -, Ixl~<a.  
O~ 

For the purposes of numerical computation, the problem formulated in the z-plane, defined 
by equations (1) and (2), is now transformed into a r-plane in which the bottom streamline 
becomes a straight line. This avoids the potential difficulties associated with the stagnation 

points at x = _+ a. (see Forbes and Schwartz [4]). The new variable r = ~ + it/is defined by the 

relation 

z = r + --  (r 2 - a2) ~, (3) 
Ot 

which is a straightforward generalization of the Joukowski transformation used in [4]. Note 

that the bottom condition in the r-plane becomes simply 

lm{ tO o. 

It is convenient at this stage to interchange the roles of r and f,  seeking to solve for r = ~ + ir~ 
as an analytic function of the independent variable f -- ¢ + i~O. This considerably simplifies the 
problem, for although the location of the free surface is unknown in the r-plane, in the f-plane 
it has the known location ~b = 1. In addition, the kinematic free-surface condition is satisfied 
identically in the f-plane. The bottom condition takes the form 

r~=0 on i f=0 ,  (4) 

and the Bernoulli equation at the free surface becomes 
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½F 2 a 2 ( A 2 + B : )  1 + r / + ~ B = ½ F 2 + I  on q /= l ,  (5) 
(aA + ~)2 + (aB + 3n) 2 r~O a 

where we have defined 

(r 2 -a2)  ~ =A +iB, 

and the subscripts denote partial differentiation. Far upstream, the flow is uniform, which 
results in the radiation condition 

~- ~ f ( 1  + as q~ ~ ---oo. (6) 

The Bernoulli equation (5) provides one relation between ~ and 77 at the free surface; in 
order that both these functions may be found there, a second relation between them must be 
obtained. To do this, the f-plane strip 0 ~< ~ ~< 1 is first extended by Schwarz reflection about 
the bottom ~b = 0. The satisfaction of the bottom condition (4) then requires that values of the 
derivative r '  on the image strip -1  ~< ~ ~< 0 be related to values on the true strip 0 ~< ff ~< 1 by 
the reflection formula 

r ' ( f )  = ~ ' ( f ) .  (7 )  

Cauchy's Integral theorem is now applied to the analytic function 

x(f)= ~'(f) - ( l  + ~ ) -' 

on a rectangular path consisting of the free surface qJ = 1 and its image ff = -1  connected by 
vertical lines at ¢ -+ + oo. For a po int  f =  q~ + iV within the path of integration, this yields 

1 t f ,~  × ( 0 + 0 d 0  + f -  X ( 0 - 0 d 0 [  
x ( f ) - -  (8) 

0 

The desired relation between the real and imaginary parts of r ' ( f ) a t  the free surface is obtained 
by allowing f to become a point on the true free surface ff = 1, and deforming the path of inte- 
gration about this point in a semi-circle of vanishingly small radius. Values of r ' ( f ) a t  the image 
surface ff = -1  are now eliminated in favour of values at the true surface ff = 1, by means of 
equation (7). Finally, on taking real parts, we obtain 

I ~ , ( ¢ ,  1) - (1 + -~-)' 1 - 2 f/~o 
(0  - ~b) 2 + 4 c~ 

1 tf~oo r /°(0 ' l )d0 £ ~  7?o(0 ' l ) (0-q~)d0~ 
¢r 0 - ¢  + - ~  (-0 - ~-2 + 4- /" (9) 
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The free-surface profile is thus found parametrically in the form (~(~,l),rt(~,l)) by solving 
the system of equations (5), (6) and (9). The variables x and y may be recovered from equation 

(3). 
The wave drag D is calculated by integrating the pressure p over the ellipse surface. Thus 

~ x , dx. (10) o=f _o ph'(x)dx= F= (u= +v 2) 

After being transformed into the r-plane and finally into the f-plane, equation (10) becomes 

O ~F 2 3fe++• = - - -  ~- . . . .  dq~ ,  ( 1 1 )  

where the function ~ in equation (11) is to be evaluated along ~ = O, and the quantities ~+_,~ 

are the solutions to the equations 

~(q~+_., O) = + ~. (12) 

The pressure p and drag D are made dimensionless by reference to the quantities pgH and 
pgH 2 respectively, where p is the density of the fluid. 

3. A linearized theory 

The linearized theory appropriate to this problem is derived by regarding 13 as a small parameter 
and expressing the solution r ( f )  as a regular perturbation expansion in this quantity. Upon sub- 
stituting into the flow equations and retaining only lowest order terms in/3, a linear system of 
equations is obtained, which appears to be too difficult to solve in closed form. Accordingly, 

this theory will not be pursued further. 
An alternative linearized theory, valid for ellipses with an aspect ratio 3/~ of order 1, may be 

derived after the fashion of Forbes and Schwartz [4]. This approach will not be described fur- 

ther here, although details are given in Forbes [5]. 
Yet another linearized approach is that adopted by Lamb ([1], p. 409). This theory assumes 

that the solution may be considered as a small perturbation to uniform flow; this assumption 

clearly does not hold in the vicinity of the stagnation points at z = + ~. For the solution f(z), 
Lamb's theory gives 

1 
Jl (ate) F 2 sin(•z - ix) + ir cos(Kz - i~¢) 

f = z - B J o  K 1 dK. (13) 
K cosh (K) - sinh (K) 

F 2 
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The free-surface elevation may be obtained from Lamb ([1]), p. 410, eq. (8)). With the present 

choice of coordinate system, this becomes 

a', (aK)cos(~x) ~ o o  

= 1 +/3].vv 1 dK. (14) Y 
K c o s h ( K ) - - -  sinh(r) 

F 2 

The function J1 appearing in equations (13) and (14) is the first kind Bessel function of order 

one. 
When F 2 > 1, the flow is symmetric about the y-axis, and the free surface does not possess 

waves. For the critical value F 2 = 1, however, there is no solution, since the integrals in equa- 

tions (13) and (14) are divergent due to a singularity in the integrands at K = 0. 
When F 2 < 1, there is a singularity in the paths of integration at K = to ,  where Ko is the 

positive real root of the transcendental equation 

tanh(Ko) = F2Ko. 

In this case, the interpretation of integrals of the type shown in equations (13) and (14) is well 
known, and is discussed extensively in the literature (see, for example, Wehausen and Laitone 
[6]). The integrals are considered to be contour integrals in the complex K-plane, with the path 
of integration by passing the pole singularity at ~o in a semi-circle of vanishingly small radius. 

Thus the integral in equation (13) may be expressed as the Cauchy Principal Value of the same 

integrand plus the term 

1 
- -  cos(KoZ - i~o) - iKoSin(KoZ -- iKo) 

rrJl (aKo) F 2 

K0 

I 1  +F2K~ - F ~ I  cosh(Ko) 

A similar result is obtained for the integral in equation (14). 
Thus it is evident that the free surface possesses no waves far upstream for F 2 < 1 ; down. 

stream of the semi-ellipse, however, is a uniform train of sinusoidal waves. Far downstream, 

equation (14)yields the free-surface profile 

y -+ 1 - Alsin(KoX), 

where the wave amplitude A 1 is given by 

27r/3J1 (~Ko) 
= (15) 

-+1 1 +K2oF 2 F 2 cosh (Ko) 
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The wave drag D may be calculated by substituting equation (13) into equation (10). This 
results in the classical formula 

D = ~ A1 1 sinh (2t%)_J + O (J3 3)' (16) 

which is given in Lamb ([1], p. 415). 

A remarkable feature of this theory is that the wave amplitude A 1 and linearized wave resis- 
tance D may become zero. This occurs each time the ellipse halflength a takes the value 

] I,s 
a = - - ,  s = O , l , . . . ,  

Ko 

wherejl,s is the s-th zero of  the Bessel function J l -  

4. Numerical methods 

The system of equations (5), (6) and (9) is to be solved at the N + 1 equally-spaced surface 

points q~o, ~1 . . . . .  ~u" To begin, the integrals in equation (9) are truncated upstream and down- 
stream at the points ~o and q~N, and the singularity is subtracted from the Cauchy Principal- 

Value integral, leaving a non-singular integral plus a natural logarithm term. The equation is 
now evaluated at the midpoints q5 = q~k-,, k = 1 .. . . .  N and the integrals are discretized using 
Simpson's Rule. Thus equation (9) is approximated by a matrix system of the form 

~ k - , - -  1+ - - - -  2; ' - -  1+ = 
zr j=o akj ~J 

/T j=o 

t N 

(r/j - , ) ,  _2: o j= ckir / j  - ~  r /k-"  In 
% - ,  ¢o 

k = 1 .... ,N, (17) 

with suitable weights ak j  , bkj and Ckj. A three-point interpolation formula, consistent with the 
t t parabolae fitted by Simpson's Rule, is used to express ~g_ ,  and r /k_ ,  in terms of values of 

these functions at neighbouring whole points, so that equation (17) becomes 

~ - 1 + = ek jr / j ,  k = 1, N. (18) j=o dkj  j= "" '  

The radiation condition (6) is now imposed at 4~ = ~bo ; the quantities ~o ,77o and r/o are obtained 
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from equation (6), and Bernoulli's equation (5) then gives to .  Since these quantities are now all 
known, equation (18) may be inverted to yield 

- 1  

~, Hi/hi +Hj,N+I ~0 - 1 + --  +Hi,N+2r?o, 
j = l  

i=  1 ... . .  N. (19) 

The functions t and r~ are obtained using the Gregory integration formula. Thus 

and 

N 
t 

ti =to+ Y. wiit i j=O 

N 
t 

~?i =rIo + ]~ wijr?o, i=  1 ..... N, (20) 
j=0 

where the wij are appropriate weights. 

The Bernoulli equation (5), evaluated at each of  the Npo in t s  ¢1 ..... CU, yields a system of 
t r t 

N non-linear algebraic equations in the N unknowns r71, ..., r/N, after the quantities ti, ti,  r/i, 
i = 1 ..... N have been eliminated using equations (19) and (20). This system may be written 

t Pi(Tl~l,TI2 . . . . .  ?'/N) = 0 ,  i = 1 ..... N, ( 2 1 )  

where Pi denotes the pressure at the i-th free-surface point. 

Equations (21) are solved by Newton's method.  Thus, if the estimate at the k-th iteration is 
written r/~.(k), j = 1 ..... N, then the next estimate is obtained from the formula 

^ ( k )  j -- 1 .... N ,  (22) n](k+l)=n~(k) +,.j , 

where the correction step A} k) is the solution to the matrix equation 

The elements of  the Jacobian matrix, OPi/O~l], are obtained by exact differentiation of  equation 
(21). If the vector r/~ (k+l) ,  j = 1 .. . . .  N obtained from equation (22) is a worse estimate of  the 
solution than r/] (k) (in the sense that the root-mean-squared of  the residual surface pressures Pi 
is observed to increase, rather than decrease), then the correction vector ~(k) is halved and the 

iteration (22) is repeated. 
Solutions to equations (21) are usually obtained rapidly, due to the quadratic convergence 

of Newton's method.  When N = 130, a converged free-surface profile with root-mean-squared 
surface pressure < 10 -1° is obtained in four or five iterations, and requires about two minutes 
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of computing time on a CDC CYBER 173 computer. It is often sufficient to start the iteration 

with an initially flat profile (r~' = 0), although occasionally, a previously-computed non-linear 
solution is used for this purpose. 

The wave resistance D of the semi-elliptical body is computed from the non-linear free- 

surface profile using equation (8) to generate values of ~' at points along the bottom ~ = 0. 
These values are numerically integrated to obtain ~, using equation (6) to supply the value of 

at the first point q~0 upstream. 

Equations (12) are now solved by cubic-spline interpolation and Newton's method, and the 

drag D is evaluated from equation (11) using Trapezoidal Rule integration. 

5. Presentation of results 

When F 2 < 1, Lamb's linearized theory predicts a surface profile free of waves on the upstream 

side, and in general possessing a downstream wave train. For F 2 > 1, however, a symmetric, 

wave-free profile is obtained. These general features are confirmed by the non-linear results. For 

F 2 > 1, the non-linear solution also indicates a symmetric, wave-free profile (see Forbes and 

Schwartz [4]); however, we consider this branch of solutions possibly to be physically unrealis- 

tic, and accordingly, they will not be discussed further in this paper. 

In Fig. 2 we present a plot of wave drag D as a function of the ellipse half-length a, for an 
ellipse of height /3 = 0.02 in a stream with F = 0.8. The dashed line represents the linearized 

result, evaluated from equation (16). This is compared with the drag computed from converged 

non-linear free-surface profiles, obtained for 36 different values of c~. For large values of a, the 

non-linear drag curve exhibits a marked shift to the right, which is in agreement with previously 

observed trends [2, 3]. In addition, the non-linear drag at the first peak is significantly greater 

than the linearized value. Note that the non-linear drag is very small indeed at the two minima 

indicated on the diagram. 

In Fig. 3, the extent to which the non-linear downstream wave train may be made to vanish 

for special choices of a,/3, F is  investigated. Here,/3 = 0.02 and F =  0.8, as in Fig. 2. In Fig. 3 we 

have plotted three non-linear surface profiles; when a = 1.6, the downstream wave amplitude, 

6 -  l inear ized 
o o 

o 

~o . . . . . .  non- l inear  
o 

! 

x 4 -  4~' 

0 

D 

2 ¢ /o 

2 4 6 8 10 
Figure 2. Wave resistance as a function of  a, for F = 0.8 and fl = 0.02. The dashed line is Lamb's result, and 
the points indicate results obtained from converged nonqinear surface profiles. 
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Y _ 

- - 6 . 6  :, :' :", 
1 . 0 6  : " , : ', 

- -  - - 3 . 9 5  , ' 

. . . . . . . .  1 . 6  1 . o / .  - : ', 

.9} 
Figure 3. Three free-surface profiles for F = 0.8 and ~ = 0.02. Results for a = 1.6,a = 3.95 and a = 6.6 are 
shown. 

and hence also the wave drag in Fig. 2, both attain their maximum values, whilst the down- 

stream wave amplitude is at a miminum for a = 3.95 and ct = 6.6. Note that all three surface 

profiles in Fig. 3 exhibit a very small wave train upstream of  the semi-eUipse. This is a numerical 

error due to the truncation of  the integrals in equation (9) at ¢ = ¢o, and the subsequent impo- 

sition of  the radiation condition (6) at this point. The reason for the existence of  the spurious 

upstream waves is obvious for the case a = 1.6; the imposition of  the radiation condition at 

~b = ¢0 does not correctly allow for the non-linear rise in the free-surface level ahead of  the 

obstacle (see Benjamin [7]), and consequently, the free surface exhibits a small numerical over- 

shoot in the upstream region. Thus the amplitude of  the upstream waves may be reduced some- 

what by increasing the value of  % slightly above the value given by equation (6), and the size 

of  the upstream waves of  the case a = 1.6 shown in Fig. 3 has been controlled in precisely this 

fashion. There is also a numerical error associated with the truncation of  the integrals in equa- 

tion (9) downstream at the last point ~N" The effects of  this appear to be localized to a very 

small region, involving the last quarter wavelength or so downstream, and do not affect the rest 

of  the free-surface profile. 

The amplitude of  the downstream waves for the cases c~ = 3.95 and a = 6.6 shown in Fig. 3 is 

extremely small, being roughly the same size as the amplitude of  the spurious upstream waves. 

Indeed, we believe that the presence of  downstream waves is only due to the existence of  the 

upstream waves, and have no doubt that a surface profile totally without waves may be obtain- 

ed by adequately eliminating the small, numerically produced, upstream waves. Thus the drag 

curve of  Fig. 2 is expected to pass through zero at a ~ 3.95 and again at a * 6.6. However, the 

non-linear drag in Fig. 2 actually becomes zero at slightly smaller values of  a than these. This is 

a numerical error in the procedure for computing the non-linear drag (described at the end of  

Section 4), which is again a consequence of  imposing the radiation condition (6) at the point ~bo. 

Thus, although the non-linear drag may be computed without difficulty for small a, the results 

are more subject to error as c~ becomes large and F becomes small. 

The non-linear effects of  the ellipse height /3 upon the downstream peak-to-trough wave 

height are investigated in Fig. 4. Results are presented for/3 = 0.05 and for/3 = 0.1, at F = 0.5. 
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% 

X 

7: 
(9 

l i n e o r i z e d  

6 
~ q ~  = .1 . . . .  ~ n o n - t i n e o r  

4 

I 

e 2 
> 
C~ 

1 2 3 4 

Figure 4. Downstream wave height as a funct ion o f  c~, for  F = 0.5. Linearized and nonqinear results are 
presented for  fl = 0.05 and fl = 0.1. The l inearized result is indicated by  a dashed line. Points denote non- 

linear results. 

The linearized result was computed from equation (15), whilst in the non-linear case, results 

were obtained for 36 different values of  a when fl = 0.05, and for 39 values of  a when fl = 0.1. 

The wave drag is not shown for these cases, since the error which occurs in the computation of  

the non-linear wave resistance at large values of  a renders the accuracy of  the results uncertain. 

According to the linearized theory, the values of  a at which the wave height becomes zero 

are functions only of  F, and do not depend on ft. However, the non-linear results in Fig. 4 show 

a strong dependence on ft. For fl = 0.05, the non-linear wave height takes its first minimum at a 

value of  a which is about 20 per cent larger than the value predicted by linearized theory, and 

for fl = 0.1, the value of  a at which the first minimum occurs is some 50 per cent greater than 

the linearized result. At this value of  the Froude number, surface profiles have again been com- 

puted for which the height of  the downstream waves is extremely small, and we do not doubt 

that it may be made to vanish altogether by eliminating the spurious waves from the upstream 

portion of  the flow. 

The behaviour of  the wave height as a ~ 0 is also of  interest. In this case, the ellipse degen- 

erates to a vertical plate of  zero thickness attached to the bottom, l amb ' s  theory ceases to be 

valid for small a, and in the limit c~ ~ 0, predicts a downstream wave height of  zero. This ten- 

dency is not observed in the non-linear results; instead, the non-linear wave height appears to 

remain finite as a -+ 0. This result is entirely to be expected, since a vertical plate still disturbs 

the upstream uniform flow, and thus acts as a wave-maker. 

6. Remark 

In this paper, the effects of  non-linearity on the wave resistance experienced by a submerged 

semi-elliptical body attached to the bot tom have been studied, and the numerical results indi- 

cate that the non-linear drag should apparently vanish at certain values of  the ellipse length. 

However, although free-surface profiles have been obtained for which the downstream wave 

height is extremely small, we have not yet observed it to vanish completely, and we believe this 
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to be due to the necessity of  the present method to impose a radiation condition upstream. To 

search for configurations having exactly zero drag, it may perhaps be possible to formulate the 

problem differently,  taking advantage of  the symmetry of  the solution about x = 0 for these 

cases, and allowing all the free-surface points to ,~ary. The parameter c~ would presumably be an 

unknown quanti ty,  to be obtained along with the free-surface profile in the Newton's method 

solution of  the problem. As with the linearized theory,  the non-linear wave drag possibly 

vanishes for an infinite number of  values of  ~, when/3 and F are fixed. 
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